<noframes id="ixm7d"><noframes id="ixm7d"><rt id="ixm7d"><delect id="ixm7d"></delect></rt><noframes id="ixm7d"><rt id="ixm7d"><rt id="ixm7d"></rt></rt><rt id="ixm7d"></rt> <noframes id="ixm7d"><rt id="ixm7d"><delect id="ixm7d"></delect></rt><delect id="ixm7d"></delect><bdo id="ixm7d"></bdo><rt id="ixm7d"></rt><bdo id="ixm7d"></bdo><noframes id="ixm7d"><rt id="ixm7d"><rt id="ixm7d"></rt></rt><rt id="ixm7d"><rt id="ixm7d"></rt></rt><noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d"><rt id="ixm7d"></rt> <noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d"><noframes id="ixm7d"><noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d"><noframes id="ixm7d"><noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d"><rt id="ixm7d"></rt><noframes id="ixm7d">

紅外溫度報警課程設計范文

2023-09-16

紅外溫度報警課程設計范文第1篇

關鍵詞:氧化鋁焙燒;器件選型;串級控制系統;PID參數整定

一、氧化鋁生產工藝

生產氧化鋁的方法大致可分為四類:堿法、酸法、酸堿聯合法與熱法。目前工業上幾乎全部是采用堿法生產。堿法有拜耳法、燒結法及拜耳燒結聯合法等多種流程。

目前,我國氧化鋁工業采用的生產方法有燒結法,混聯法和拜耳法三種,其中燒結法占20.2%,混聯法占69.4%,拜耳法占10.4%。雖然燒結法的裝備水平和技術水平在今年來有所提高,但是我國的燒結技術仍處于較低水平。而由于拜耳法和燒結混合法組成的混聯法,不僅由于增加了燒結系統而使整個流程復雜,投資增大,更由于燒結法系統裝備水平和技術水平不高,使得氧化鋁生產的能耗增大,成本增高,降低我國氧化鋁產品在世界市場上的競爭力。拜耳法比較簡單,能耗小,產品質量好,處理高品位鋁土礦石,產品成品也低。目前全世界90%的氧化鋁是用拜耳法生產的。

拜耳法的原理是基于氧化鋁在苛性堿溶液中溶解度的變化以及過氧化鈉濃度和溫度的關系。高溫和高濃度的鋁酸鈉溶液處于比較穩定的狀態,而在溫度和濃度降低時則自發分解析出氫氧化鋁沉淀,拜耳法便是建立在這樣性質的基礎上的。

下面兩項主要反映是這一方法的基礎:

Al2O3xH2O?2NaOH?(3?x)H2O?2NaAl(OH)4

NaAl(OH)4?Al(OH)3?NaOH

前一反映是在用循環的鋁酸鈉堿溶液溶出鋁土礦時進行的。鋁土礦中所含的一水和三水氧化鋁在一定條件下以鋁酸鈉形態進入溶液。后一反映是在另一條件下發生的析出氫氧化鋁沉淀的水解反應。鋁酸鈉溶液在95-100度不致水解的穩定性可以用來從其中分離赤泥,然后使溶液冷卻,轉變為不穩定狀態,以析出氫氧化鋁。

拜耳法生產過程簡介:原礦經選礦、原礦漿磨制、溶出與脫硅、赤泥分離與精制、晶種分解、氫氧化鋁焙燒成為氧化鋁產品。

1破碎后進廠的碎高礦經均化場均化后,用斗輪取料機取料入輸送機進入鋁礦倉,石灰石經煅燒后輸送到石灰倉,然后與循環母液經調配后按比例進入棒磨機、球磨機的兩段磨和旋流器組成的磨礦分級閉路循環系統。分級后的溢流經緩沖槽和泵進入原礦漿儲槽,用高壓泥漿泵輸送礦漿進入多級預熱和溶出系統,加熱介質可用溶鹽也可用高壓新蒸氣,各級礦漿自蒸發器排出的乏氣分別用來預熱各級預熱器中的礦漿。溶出設備可用套管加熱與高壓釜組成溶出器組。溶出后的礦漿經多級降壓自蒸發器降壓后,與赤泥一次洗液一同進入礦漿稀釋槽。末級自蒸發器排出的乏氣,用來預熱赤泥洗水,洗水由循環水和不合格的冷凝水組成。稀釋礦漿進入分離沉降槽,其溢流經過葉濾和降溫后送去晶種攪拌分解,分解后的氫氧化鋁漿液經分離后,大部分氫氧化鋁返回種分槽作為晶種使用,其余部分送去洗滌,洗水用純凈的熱水,洗凈后的氫氧化鋁送去焙燒,焙燒后的氧化鋁即為成品氧化鋁。分離后的種分母液送去蒸發,加入少量鹽類晶種以誘導鹽類晶種析出,其溢流與濾液、補充新的液體苛性鈉后組成循環母液,送去調配制備原礦漿。

二、氧化鋁生產焙燒過程工藝

氫氧化鋁焙燒是氧化鋁生產工藝中的最后一道工序。焙燒的目的是在高溫下把氧化鋁的附著水和結晶水脫除,從而生成物理化學性質符合電解要求的氧化鋁。 (1)焙燒原理

氫氧化鋁經過焙燒爐的干燥段,焙燒段和冷卻段使之烘干,脫水和晶形轉變而變成氧化鋁產品其化學變化可分為以下幾個階段。

(a)脫除附著水

CAl(OH)3H2O?100???Al(OH)3?H2O ?當溫度高于100C時氫氧化鋁中的附著水被蒸發,此反應發生在閃速干燥器。 (b)脫除結晶水

結晶水的脫除分兩步進行,250-300度時,失去兩個結晶水,在500-600度的溫度下它失去最后一個結晶水。而成為r?AlO。

23300CAl2O33H2O?250?????Al2O3?2H2O ??600CAl2O3H2O?500??????Al2O3?H2O ? (c)晶型轉變

氫氧化鋁在脫水過程中伴隨著晶體轉變,r?Al2O3在950度時開始進行晶型轉變,逐漸由r?Al2O3轉變為a-Al2O3。

(2)氧化鋁焙燒過程生產過程流程介紹

流態化焙燒是世界上最先進的氫氧化鋁焙燒技術與裝置,流態化是一種固體顆粒與氣體接觸而變成類似流體狀態的操作技術。而固體物料在流態化狀態下與氣體或液體的熱交換過程最為強烈。

2 (a)此爐型采用了在干燥段設計熱發生器這一新穎措施,當供料氫氧化鋁附著水含量增大時,不需象其它爐型那樣采取增加過??諝獾姆绞絹碓黾痈稍锬芰?,僅需啟動干燥熱發生器來增加干燥段熱量,避免了廢氣量大增而大量損失熱量,因此,與前二種爐型相比,氣體懸焙燒爐熱耗和電耗要低。

(b)整套裝置設計簡單。一是物料自上而下流動,可避免事故停爐時的爐內積料和計劃停爐時的排料;二是設備簡單,除流化冷卻器外無任何流化床板,沒有物料控制閥,方便了設備維檢修:三是負壓作業對焙燒爐的問題診斷和事故處理有利。這些都有利于故障后生產的快速恢復,給生產組織帶來方便。

(c)控制回路簡單,氣體懸浮焙燒爐雖有多條自動控制回路,但在生產中起主要作用的僅有2條,一條是主燃燒系統的主爐溫度控制回路,另一條是O2含量控制回路。

三、焙燒爐溫度控制方案設計

目前工業自動化水平已成為衡量各行各業現代化水平的一個重要標志。一個控控制系統包括控制器、傳感器、變送器、執行機構、輸入輸出接口??刂破鞯妮敵鼋涍^輸出接口、執行機構,加到被控系統上;控制系統的被控量,經過傳感器,變送器,通過輸入接口送到控 制器。

(1)對于焙燒過程而言,主要控制焙燒爐出口溫度。而影響焙燒爐出口溫度的因素主要就是燃料的流量,而流量又決定于主燃燒器的流量閥門的開度。因此,我們引入中間點信號,即最能反應焙燒爐出口溫度的進入主燃燒器中的燃料流量,作為調節器的補充信號,以便快速反應影響焙燒爐出口溫度變化的擾動,引入該點作為輔助被調量,通過調節管道上流量閥的開度調整燃料的流量,組成了流量.溫度串級調節系統,從而調節焙燒爐的出口溫度,來保氧化鋁的產量和質量口”。焙燒爐溫度控制回路流程圖如圖所示:

圖1 焙燒爐溫度控制回路流程圖

3 焙燒爐溫度控制回路設計為串級控制回路,主回路為溫度控制回路,其輸入為焙燒爐的出口溫度的設定值,控制器輸出為副回路的輸入,測量儀表為一體化熱電偶;副回路為流量控制回路,其輸入為主控制器的輸出或主燃燒器的流量設定,控制器輸出為主燃燒器V19流量調節閥的百分比開度,執行機構為流量電動調節閥,測量儀表為電磁流量計。 從方框圖可以看出,串級調節系統有兩個閉環的調節回路:

圖2 溫度控制回路結構圖

a)由PID控制器、調節閥、主燃燒器、流量計構成了副環回路。 b)由PID控制器、副環回路、焙燒爐、溫度計構成了主環回路。

副環回路為流量調節系統,選用標準PID控制器來控制該系統。主環回路為溫度調節系統,也選用標準PID控制器來控制該系統。

主調節器出的的信號不是直接調節溫度,而是作為副調節器的可變給定值,與燃料流量信號比較,再通過副調節器去控制電動閥動作,以調節燃料流量,保證焙燒爐出口溫度能較快的跟蹤設定值并最終保持在設定值附近不變。

(2)從動態特性的角度考慮,優化控制器性能與結構,提高系統的響應速度。在對控制系統進行設計時,盡量根據被控制對象選擇一組較為合適的控制器參數,提達到更好可控制效果。而通過對系統建立數學模型,根據模型特性,通過設定某種性能指標,在實現最優指標的前提下,對控制器參數進行尋優可謂是個好的優化控制器性能的辦法。對于串級控制系統來說,有兩個控制器,因此需要分別對兩個控制器的參數進行整定,整定的順序先調節副回路,待副回路調節達到要求后,在調節主回路。

(3)如果測量元件的延遲和慣性比較大,就不能及時反映溫度的變化,就會造成系統不穩定,影響控制質量。因此,在系統的儀表選型上盡量使用快速的測量元件,安裝在正確的位置,保證測量信號傳遞的快速性,減小延遲和慣性。

四、焙燒爐溫度回路對象模型的建立與驗證

建立數學模型的方法有許多種,像機理建模、系統辨識等。機理建模有較大的普遍性,但是多數工業過程的機理較為復雜,其數學模型很難建立,雖然在建模過程中作了一些具有一定實際依據的近似和假設,但是逼近不能完全反映過程的實際情況,有時甚至會帶來一些估計

4不到的影響。因此,在工程目前主要采用試驗建模一過程辨識和參數估計的方法。建模的方法我們采用響應曲線法,響應曲線法主要用于階躍響應曲線和矩形脈沖響應曲線。

圖3 階躍響應法 圖4 矩形脈沖響應法 (1)階躍響應曲線的試驗測定:

將被控過程的輸入量作一階躍變化,同時記錄其輸出量隨時間而變化的曲線,則稱為階躍響應曲線。

階躍響應曲線能直觀,完全描述被控過程的動態特性。實驗測試方法易于實現,只要是閥門的開度作一階躍變化即可,實驗時必須注意:

(a)合理選擇階躍擾動量,既不能太大,以免影響正常生產,也不能太小,以防被控過程的不真實性。通常取階躍信號值為正常輸入信號的5%一15%,以不影響生產為準。 (b)試驗應在相同的測試條件下重復做幾次,需獲得兩次以上的比較接近的相應曲線,減少干擾的影響。

(c)試驗應在階躍信號作正,反方向變化時分別測出其相應曲線,以檢驗被控過程的非線性程度。

(d)試驗前,即在輸入階躍信號前,被控過程必需處于穩定的工作狀態。在一次試驗完成后,必須是被控過程穩定一段時間后再施加測試信號作第二次試驗。

考慮到實際工程的方便,對主爐溫度控制我們采用階躍響應曲線試驗建模法。根據 控制理論來分析,設計或改進一個過程控制系統,只有過程的階躍響應曲線顯然是不夠的,還必須有階躍響應曲線來辨識被控過程數學模型,如微分方程、傳遞函數、頻率特性、差分方程等。在確定模型參數時,首先分析階躍響應曲線的形狀,選取一種模型結構,然后進行參數估計。由階躍響應曲線辨識數學模型的方法很多,一階慣性環節是一種常用的估計方法。

在過程輸入階躍信號x0的瞬時,其響應曲線的斜率最大,如圖5所示。

5圖5 階躍響應曲線

此時,其數學模型可用一階慣性環節來近似,即

w(s)??sK?1

式中參數K、?的求法如下: (1)過程的靜態放大系數

y(?)?y(0) x0K?(2)過程的時間常數

對于上式所示的過程模型,在階躍信號x0作用下的時間特性為:

y(t)?Kx0(1?e)

式中,K為過程的放大系數,可由上式可確定。

圖3.20描繪該方程的曲線圖,表明一階過程對輸入的突然變化不能瞬時做出響應。事實上,當時間間隔等于過程時間常數是(t??)過程響應應僅為完全值得63.2%。從利用上講,除了t??,過程輸出總不會達到新的穩態值;當(t?5?)時,相應近似為最終穩態值。

t??

五、設備及控制儀表的選型

(1)溫度變送器的選擇

選用JCJ100G溫度變送器,JCJ100G溫度變送器將熱電熱偶所測的溫度變化通過電路處理,經信號放大后轉化成標準的電壓或電流信號。信號可以供數字儀表、記錄儀、模擬調節器、DCS系統,廣泛用于工業生產過程檢測與控制系統。 本溫度變送器采用優質電子器件,性能遠高于其他同類產品,物美價廉。 (2)控制器選型

按照設計要求,本設計選用一個KSW-6-16型溫度控制器為1300℃電爐的配套設備,與鉑銠—鉑熱電偶配套使用,可對電爐內的溫度進行測量、顯示、控制,并可使爐膛內的溫度自動保持恒溫。以硅碳棒為加熱元件的高溫電阻爐,其加熱元件的冷態與熱態時的電阻值相差較大,在長期使用中硅碳棒的電阻值將逐漸變大。所以必須與調壓設備配套使用,KSW-6-16型號的溫度控制器具有溫度控制和電壓調節二種功能,該溫度控制器的溫度顯示有數字顯示

6和指針顯示二種,其中尤以固態繼電器為執行元件并配以數字顯示的控制器性能更為優越。 結構及工作原理:溫度控制器的外殼由鋼板沖壓折制成型并采用鋁合金框架結構,外殼表面采用高強度的靜電噴涂,漆膜光滑牢固??刂破鞯那安垦b有溫度控制儀表、電壓表、電流表和電源開關??刂破鞯膬炔垦b有可控硅、線路板及螺旋保險和接線端子等電器元件。該溫度控制系統采用了優質電子集成元件,控溫靈敏、性能可靠、使用方便。

其工作原理:熱電偶將電爐內部的溫度轉換為毫伏電壓值,經過集成放大器的放大、比較后,輸出移相控制信號,有效地控制可控硅的導通角,進而控制硅碳棒的平均加熱功率,使爐膛內的溫度保持恒溫。 (3)執行器的選擇

PID系統的執行機構為電動調節閥、排料閥。電動閥使用電機作動力,氣動閥使用壓縮空氣作動力,電動閥對液體介質和大管道徑氣體效果好,不受氣候影響,電動調節閥要求電動調節裝置和閥體間隙精密,能夠準確地控制閥門開度,閥芯則根據重油黏度系數選用V型半球閥,使其過油能夠連續通順,并使調節與開度盡量滿足線性關系。為了解決排料的連續性,選擇了氣動控制排料閥,執行機構為I/P定位器。I/P定位器是二位三通電磁閥。此裝置通過閥門開關來控制氣缸帶動活塞運動。 (4)氣開氣關選擇

氣動調節閥氣開或者氣關,通常是通過執行機構的正反作用和調節閥結構的不同組裝方式實現。氣開氣關的選擇是根據工藝生產的安全角度出發來考慮的。在本設計中,沸騰焙燒爐的溫度控制,調節閥安裝在燃料氣管道上,根據爐膛的溫度或被加熱物料在加熱爐出口的溫度來控制燃料的供應。根據生產過程的工藝特點和安全要求,保證人身安全原則、系統與設備安全原則,保證產品的質量原則,減少原料和動力浪費原則,基于介質特點的工藝設備安全原則,本設計選用氣開閥更安全些,因為一旦氣源停止供給,閥門處于關閉比閥門處于全開更適合。如果氣源中斷,燃料閥全開,會使加熱過量發生危險。 (5)調節器正負作用選擇

副調節器作用方式的選擇,確定副被控過程的Ko2,當調節閥開度增大,燃料量增大,爐膛溫度上升,所以 Ko2 >0 。最后確定副調節器,為保證副回路是負反饋,各環節放大系數(即增益)乘積必須為正,所以副調節器 K 2>0 ,副調節器作用方式為反作用方式。 主調節器作用方式的選擇,爐膛溫度升高,物料出口溫度也升高,主被控過程 Ko1 > 0。為保證主回路為負反饋,各環節放大系數乘積必須為正,所以副調節器的放大系數 K 1> 0,主調節器作用方式為反作用方式。

六、溫度控制器PID參數整定及仿真

PID控制器的參數整定是控制系統設計的核心內容。它是根據被控過程的特性確定PID控制器的比例系數、積分時間和微分時間的大小。PID控制器參數整定的方法很多,概括起

7來有兩大類:一是理論計算整定法。它主要是依據系統的數學模型,經過理論計算確定控制器參數。這種方法所得到的計算數據未必可以直接用,還必須通過工程實際進行調整和修改。二是工程整定方法,它主要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易于掌握,在工程實際中被廣泛采用。PID控制器參數的工程整定方法,主要有臨界比例法、反應曲線法和衰減法。三種方法各有其特點,其共同點都是通過試驗,然后按照工程經驗公式對控制器參數進行整定。但無論采用哪一種方法所得到的控制器參數,都需要在實際運行中進行最后調整與完善?,F在一般采用的是臨界比例法。利用該方法進行PID控制器參數的整定步驟如下:(1)首先預選擇一個足夠短的采樣周期讓系統工作;(2)僅加入比例控制環節,直到系統對輸入的階躍響應出現臨界振蕩,記下這時的比例放大系數和臨界振蕩周期;(3)在一定的控制度下通過公式計算得到PID控制器的參數。

被控對象為一階傳遞函數

3.98W(s)??sK??111.15s?1

采樣時間為O.2秒,輸入指令為一階階躍信號。

溫度控制器PID參數整定方法,應用Matlab計算機語言編寫了算法PID參數程序,獲得優化參數。

整定后的PID控制階躍響應在Matlab環境下進行仿真,仿真控制程序如圖3.31所 示。

圖6 溫度PID控制的Simulink仿真程序

在仿真環境下焙燒爐設定1110℃,仿真曲線圖所示。

8圖7 溫度PID整定的階躍響應曲線

通過仿真曲線圖7可以看出通過PID參數能夠使焙燒爐溫度快速穩定準確的跟蹤設定值,上升時間大約為8s,調節時間約為10s,超調量小,基本達到控制要求。

七、總結

所設計的回路控制策略應用到現場,能夠滿足現場的控制要求,而且能夠提高產品的品質,實驗室整定的PID參數對現場控制器有很好的指導意義,提高了控制精度;為氧化鋁焙燒生產提供保障;減輕了現場工藝人員的工作強度,同時也能更加精確、嚴格的按照設定好的曲線烘爐,提高爐子內襯的使用壽命,為順利生產提供前提保障??傊?,焙燒過程計算機控制系統成功的應用到實際工程中,滿足實際項目的工藝要求,降低了現場人員的工作量,節約了現場能量,提高了產品質量和產量。

參考文獻:

[1] 熊志利. 氧化鋁生產焙燒過程計算機控制系統的設計與開發 東北大學 [2] 翟小康. 焙燒生產工藝燃燒控制系統分析 消費電子 2014,(14) [3] 姚月航. 氧化鋁的焙燒技術與節能 中國科技博覽 2014,(12) [4] 盛坤. PID技術在氧化鋁焙燒爐上的應用 自動化儀表 2013,34(6) [5] 陶峰. 淺析PID參數如何調節 中國科技博覽 2011,(38):14-17 [6] 趙紫靜,吳建民. 淺議PID控制在溫度控制系統中的應用[J].安徽農業科學,2008,(21):9335-9336 [7] 熊志利 氧化鋁焙燒過程回路控制策略研究 企業技術開發 2010,(19) [8] 李傳淮,呂文義. 氧化鋁生產過程中的燃燒控制 自動化儀表 2002年 第3期

紅外溫度報警課程設計范文第2篇

無線溫度、壓力報警裝置是為鉆井行業中伊頓剎車配置的, 此產品對伊頓剎車使用過程中的斷水、水溫過高發出報警信息, 提示操作人員及時檢查剎車的運行狀況, 避免剎車在斷水或水溫過高的情況下運轉損壞剎車。本產品主要由報警控制箱及現場傳感器組成。

2 原理

3 技術參數

3.1 防爆控制箱

體積:長×寬×厚=230×135×110mm

電源:220AC/24DC (可選)

3.2 無線溫度變送器

分度號:pt100精度等級:IEC B級

固定螺紋:M16x1.5配碳鋼底座

測溫范圍:-50~400℃保護管材質:304

傳輸距離:視距>300米

環境溫度:-30℃~+85℃

3.3 無線壓力變送器

供電電源:3.6V/9Ah鋰電池

傳輸距離:視距>300米

環境溫度:-30℃~+85℃

4 安裝

(1) 防爆控制箱安裝在司鉆房內, 安裝須穩固、牢靠。

(2) 無線壓力變送器安裝到進水分水器, 開孔尺寸Φ8, 安裝底座須與水管焊接牢固 ( 滿焊) , 然后將傳感探頭與底座擰緊。

(3) 無線溫度變送器安裝到出水分水器, 開孔尺寸Φ8, 安裝底座須與水管焊接牢固 ( 滿焊) , 然后將傳感探頭與底座擰緊。

5 使用方法

(1) 將無線溫度、壓力變送器電池接通。

(2) 防爆控制箱接通220AC/24DC電源, 按下報警控制器電源按鈕, 系統將開始工作。

(3) 報警設定值可根據說明書進行設置, 一般情況下不需要設置, 出廠前已將參數設置完畢。

6 結語

本鉆井氣動水冷盤式剎車無線溫度、壓力報警裝置能夠較好的應用于井隊現場, 該系統可降氣動水冷盤式剎車故障率, 減少維修成本, 穩定生產作業, 同時也為剎車日常管理、維護起到了較大的提升作用。

摘要:本文介紹了一種鉆井氣動水冷盤式剎車無線溫度、壓力報警裝置, 改變了傳統的有線報警方式, 減少了井隊維護工作量, 同時報警設備的穩定性有了較大的提升。

關鍵詞:無線溫度傳感器,無線壓力傳感器,報警,剎車

參考文獻

[1] 孫松堯.鉆井機械[M].石油工業出版社, 2006, 8.

[2] 王小強.ZigBee無線傳感器網絡設計與實現[M].化學工業出版社, 2012, 6.

上一篇:環衛服務質量整改措施范文下一篇:呼吸科護士長述職報告范文

91尤物免费视频-97这里有精品视频-99久久婷婷国产综合亚洲-国产91精品老熟女泄火